Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking
نویسندگان
چکیده
Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM) just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter) was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome.
منابع مشابه
Control of stepping velocity in a single insect leg during walking BY JENS
In the single middle leg preparation of the stick insect walking on a treadmill, the activity of flexor and extensor tibiae motor neurons and muscles, which are responsible for the movement of the tibia in stance and swing phases, respectively, was investigated with respect to changes in stepping velocity. Changes in stepping velocity were correlated with cycle period. There was a close correla...
متن کاملControl of stepping velocity in a single insect leg during walking.
In the single middle leg preparation of the stick insect walking on a treadmill, the activity of flexor and extensor tibiae motor neurons and muscles, which are responsible for the movement of the tibia in stance and swing phases, respectively, was investigated with respect to changes in stepping velocity. Changes in stepping velocity were correlated with cycle period. There was a close correla...
متن کاملThe Influence of Horizontal Velocity on Inter-Lower-Limbs Local and Global Asymmetry during Walking
Purpose: Considering the influence of horizontal velocity on many biomechanical characteristics of walking, the purpose of this study was to investigate how inter-lower-limbs local and global asymmetry is influenced by changes in walking speed from slow to fast. Methods: Ground reaction force data and trajectory of attached markers of bilateral lower limbs of 15 right leg-dominant able-bodied ...
متن کاملStepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking.
During human walking, perturbations to the upper body can be partly corrected by placing the foot appropriately on the next step. Here, we infer aspects of such foot placement dynamics using step-to-step variability over hundreds of steps of steady-state walking data. In particular, we infer dependence of the 'next' foot position on upper body state at different phases during the 'current' step...
متن کاملThe Immediate Effect of Knee Brace on the Activity of Selected Lower Limb Muscles during Stance Phase of Walking in Females with Patellofemoral Pain Syndrome
Background & Aims: The purpose of this study was to determine the immediate effect of patella support brace on co-contraction and electromyographic activity of selected lower limb muscles in females with patellofemoral pain syndrome during stance phase of gait. Methods: EMG activity of vastus lateralis, vastus medialis, rectus femoris, gastrocnemius, biceps femoris, semitendinosus, gluteus medi...
متن کامل